
Intro to Object Factories

By Rob Gonda



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 2

History

Once upon a time…
Procedural Code

• Spaghetti Code
• Organized

Includes
Modules

OOP
• Objects as containers
• The Big Object
• Scoped / Persistent Objects
• Encapsulation?
• Relations/ Wiring



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 3

OOP: The Object

Basics
Lifecycle
Constructors
Types



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 4

OOP: The Object: Basics

Class: A class defines the abstract 
characteristics of a thing, including the 
thing's characteristics – its attributes or 
properties – and behaviors or methods
Object: A particular instance of a class.
Method: An object's abilities – Function



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 5

OOP: The Object: Lifecycle

Gets created runs pseudo-constructor
Gets initialized CF has no constructor 
method. init() method commonly used
Use methods
Destroy component CF has no 
deconstructor method.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 6

OOP: The Object: Types

Business Model Layer
• Transient – stateful

People, places, and things

Service Layer
• Persistent – stateless

Services and infrastructure

© Sean Corfield



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 7

Problems

Object Initialization
Relationships – wiring
Manageability – moving objects –
keeping paths
Loosely coupled
Unit Testing



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 8

Design Patterns Defined

In software engineering, a design 
pattern is a general repeatable solution 
to a commonly occurring problem in 
software design.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 9

The Object Factory

Typically, an object factory is quite 
simple and small. Its main role is to 
collect the information necessary to 
create an instance of the intended 
object's class and then to invoke that 
class's constructor.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 10

The Factory Pattern

The factory method pattern is an object-
oriented design pattern. Like other 
creational patterns, it deals with the 
problem of creating objects without 
specifying the exact class of object that 
will be created.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 11

Why Factories

Object Factory creates objects
Centralize repository for path and 
dependencies
All objects depend on the factory
• Factory is passed to all objects



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 12

Inversion of Control

Inversion of Control, also known as 
IOC, is an important object-oriented 
programming principle that can be used 
to reduce coupling inherent in computer 
programmes. 



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 13

Dependency Injection

Dependency injection (DI) is a 
programming design pattern and 
architectural model, sometimes also 
referred to as inversion of control or 
IoC, although technically speaking, 
dependency injection specifically refers 
to an implementation of a particular 
form of IoC.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 14

Dependency Injection II

Dependency injection is a pattern in which 
responsibility for object creation and object 
linking is removed from the objects 
themselves and transferred to a factory. 
Dependency injection therefore is inverting 
the control for object creation and linking, and 
can be seen to be a form of IoC.
There are three common forms of 
dependency injection: setter-, constructor-
and interface-based injection. 



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 15

Dependency Injection III

Dependency injection is a way to achieve loose coupling. The 
technique results in highly testable objects, particularly when 
applying test-driven development using mock objects: Avoiding 
dependencies on the implementations of collaborating classes 
(by depending only on interfaces that those classes adhere to) 
makes it possible to produce controlled unit tests that focus on
exercising the behavior of, and only of, the class under test. 
To achieve this, dependency injection is used to cause 
instances of the class under test to interact with mock 
collaborating objects, whereas, in production, dependency 
injection is used to set up associations with bona fide 
collaborating objects. 



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 16

ColdSpring: what, why

“Spring is the best thing to happen to 
programming in 20 years” – Antranig
Bassman, RSF Lead, SEPP Conference 
Vancouver 2006

ColdSpring was “inspired” by Spring – we’re 
not porting all the functionality, but solving the 
same problems.

© Dave Ross



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 17

ColdSpring II: Definition

ColdSpring is a inversion-of-control 
framework/container for CFCs (ColdFusion 
Components). Inversion of Control, or IoC, is 
synonymous with Dependency Injection, or 
DI. Dependency Injection is an easier term to 
understand because it's a more accurate 
description of what ColdSpring does. 
ColdSpring borrows its XML syntax from the 
java-based Spring Framework, but 
ColdSpring is not necessarily a "port" of 
Spring. 



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 18

ColdSpring III: Polymorphism

Components don’t care about their 
collaborators implementation, we have a 
perfect environment for “swap-ability”. 
Swap one implementation of a component 
out for another and collaborators wouldn’t 
know the difference.
Perfect for Unit testing: swap dependencies 
per abstract classes – based on interfaces



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 19

ColdSpring: Tiers, Layers

© Dave Ross



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 20

Code Examples: plain

Scope components in application
Since we don’t want to break 
encapsulation, each component re-
initialize all dependencies
• Needs to know how to initialize 

dependencies
• Multiple instances of the class in memory



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 21

Code Examples: setters

Scope components in application
Use setters to pass instances of 
dependencies to each other.



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 22

Code Examples: factory

Scope the factory in application
Get components from factory
Only factory knows how to initialize 
components
Factory passes itself to components
Components use factory to retrieve 
dependencies



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 23

Code Examples: factory DI

Scope the factory in application
Get components from factory
Only factory knows how to initialize 
components
Factory injects dependencies to components
Components don’t even know the factory 
exists



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 24

ColdSpring: The Config File

Beans
• ID
• Class

Dependencies
• Property
• Constructor



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 25

Code Examples: ColdSpring

Scope ColdSpring in application
Pass configuration file to ColdSpring
Get components from ColdSpring
Only ColdSpring knows how to initialize 
components
ColdSpring injects dependencies to 
components
Components don’t even know the ColdSpring
exists



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 26

Code Examples: ColdSpring Autowiring

Scope ColdSpring in application
Pass configuration file to ColdSpring – Introduction to 
Autowiring
Get components from ColdSpring
Only ColdSpring knows how to initialize components 
– Built-in autowiring logic
ColdSpring injects dependencies to components
Components don’t even know the ColdSpring exists



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 27

ColdSpring: Auto wiring

ColdSpring will inspect constructor and 
setter methods and identify all 
dependencies by either type or name
Pros:
• Less XML

Cons:
• No documentation



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 28

ColdSpring: AOP

Aspect Oriented Programming
Chris is da man



February 1st-2nd 2007 Rob Gonda :: www.robgonda.com 29

Thank You

Questions / Comments?
Blog: http://www.robgonda.com
Corp: http://www.ichameleongroup.com
email: rob@robgonda.com


	Intro to Object Factories
	History
	OOP: The Object
	OOP: The Object: Basics
	OOP: The Object: Lifecycle
	OOP: The Object: Types
	Problems
	Design Patterns Defined
	The Object Factory
	The Factory Pattern
	Why Factories
	Inversion of Control
	Dependency Injection
	Dependency Injection II
	Dependency Injection III
	ColdSpring: what, why
	ColdSpring II: Definition
	ColdSpring III: Polymorphism
	ColdSpring: Tiers, Layers
	Code Examples: plain
	Code Examples: setters
	Code Examples: factory
	Code Examples: factory DI
	ColdSpring: The Config File
	Code Examples: ColdSpring
	Code Examples: ColdSpring Autowiring
	ColdSpring: Auto wiring
	ColdSpring: AOP
	Thank You

